Author: 木遥

今天你想投票了吗?

2008 年 11 月 4 日,美国总统大选让奥巴马成为美国历史上第一个黑人总统,也让这个日子永载史册。美国媒体在之前的宣传中纷纷称之为「你一生中最重要的一次投票」,——事实上,每次投票之前都会有类似的宣传出现,但是这一次也许是最贴切的。 既然有投票,就有事前的机关算尽,事后的败寇成王。美国人的情绪在那个特殊的夜晚激烈地动荡着,藕粉们(奥巴马的支持者)纷纷称之为美国历史的新纪元,麦片们(麦凯恩的支持者)愤愤不平地说奥巴马只不过靠巧言令色才窃得大位,稀饭们(希拉里的支持者)则黯然神伤,来来去去想的都是「要是希拉里当时赢了民主党初选……」。而在大洋此岸的中国,借助互联网的帮助,大家也纷纷密切注视着这次大选中的种种风吹草动。在论坛里,在博客上,大家理直气壮地谈论着发生在另一个国家里的选举,在指点江山的快意之外,也心照不宣的把它视为某种意义上的借镜。由于众所周知的原因,我们对于投票这件事情的了解几乎总是匮乏的,隔岸观火,也不失为一个学习投票常识的办法。 「且慢,」也许你会有异议,「如果说选举过程中的政治操作需要学习还可以接受的话,投票本身还有什么知识可言?一人一票的统计就是了啊。」 当然不仅如此。正如我们所知,美国的选举制度并非是简单的一人一票。事实上, 「一人一票」并不一定是个自然的办法——甚至也不一定是个好办法。 让我们从下面这个简单的例子开始。假设有一组人要从 A B C 三个候选人中选出一个来担任某项职务。大家对这三个人的内心偏好列如下表: 有 2 个人认为 A 优于 B 优于 C 有 3 个人认为 A 优于 C 优于 B 有 2 个人认为 C 优于 B 优于 A 有 4 个人认为 B 优于 C 优于 A 现在大家投票。按照每人投一票的原则,每个人给他心中最胜任的人选投上一票,结果是 A 得 5 票,B 得 4 票,C […]

长度是怎样炼成的 (四)若干注记

长度的意义说了这么多,到此差不多就可以告一段落了。但是关于在前面的讨论中出现的许多数学概念和思想,却还不妨多说几句。事实上,测度论虽然只是数学中一个具体的分支,但是它的发展和演进却和数学史上最有趣的篇章之一——所谓「第三次数学危机」——联系在一起。关于这桩公案,坊间的科普书目已经汗牛充栋,我也并不想在这里再重复一遍那些随手就可以找得到的八卦,而只是想针对某些特别的概念和理论略加说明,至少,这对愿意继续阅读别的数学或者数学科普著作的朋友来说,会有点作用吧。 1. 无穷小。 这个概念无疑常常困扰没有受过现代数学训练的阅读者们,这是很自然的事情,因为它可以从直觉上意识得到,却又难于精确地把握:无穷小是什么?是不是可以精确定义的数学概念?它是一个数?还是一段长度?能不能对无穷小做计算?诸如此类等等。由于这个概念几乎天然的和各种哲学式的思辨联系在一起,使得甚至哲学家们也对它颇为关注,——当然,还有数之不尽的民科们。 关于无穷小的讨论者,最著名的大概莫过于莱布尼茨,他花了大把的精力试图精确阐述无穷小的概念并且以此作为整个微积分学的基石。在莱布尼茨看来,无穷小是一个比任何数都小但是不等于零的量,对它可以做四则运算,尤为关键的是可以做除法:两个相关的无穷小量的比值就是一个函数的导数。以此为基本语言他开始建立微积分学的基本理论,——他基本上成功了。直至今天,数学家采用的关于微分的记号仍然来自莱布尼茨,而数学学科内部关于微积分学的专门称呼——「分析学」——也来自于莱布尼茨自己对他的理论的叫法:无穷小分析。尽管牛顿和莱布尼茨在微积分的发明权上争得不可开交,可是几个世纪过去,至少在这两件事情上莱布尼茨大获全胜。 可是,也许你想不到的一件吊诡的事情是:尽管莱布尼茨在微积分学的建立过程里做出如此重要的贡献,他的思想的基石——无穷小量——却是一个在今天的数学语言里被完全抛弃了的概念。人们发现这个词汇除了带来混乱之外并没有什么特别的用处,于是作为一种语言,它被丢弃了。 事实上,即使在莱布尼茨的同时期人看来,无穷小也是一个有点让人不舒服的词:比任何大于零的数都小,却不是零。我们当然可以把它仅仅作为一种人为的逻辑概念来使用,可是这样一个怪东西的存在,既使得数学的基本对象——实数的结构变得混乱,也在很多场合带来了麻烦的难于回答的问题(尽管它也确实带来了不少方便)。在分析学蓬勃发展的十八世纪,一代又一代数学大师为此争论不休,大家混乱而各行其是地使用这个词,却没人能说清楚它的精确含义。终于,从十九世纪初期开始,以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的一大批数学家开始为分析学的严密化做出了大量的工作,他们试图在完全不采用「无穷小量」这个概念的前提下重新建立整个分析学,——他们也成功了。 于是这个词就被抛弃了。时至今日,这个词尽管在很多数学书里仍然会出现,但是这时它仅仅作为一个纯粹修辞上的词汇而不是严格的数学概念,——人们通常用它来指代「极限为零的变量」(感谢十九世纪那一大批数学家,极限这个词已经是有了严密清晰的定义而不再仅仅是某种哲学性的描述),也有的时候它被用来作为对微积分运算中的某些符号的称呼,但是无论何时,人们在使用它的时候都明确的知道自己想说什么,更关键的是,人们知道自己并不需要它,而只是偶尔像借助一个比喻一样借助它罢了。 那么,回到这个词最本源的意义:到底有没有这样一个量,比一切给定的正实数都小却又不是零?或者这个问题还有一系列等价的提法:在直线上存不存在两个「相邻」的点?存不存在「长度」的最小构成单位?等等等等。 在今天我们已经能够确定无疑的回答这些问题了:不,不存在。 事实上,这个问题的彻底解答甚至比柯西和魏尔斯特拉斯的时代还要晚:它本质上是关于实数的结构的理解的问题。即使柯西本人——尽管他奠定了现代极限理论的基础——也并不真正了解「实数是什么」这样一个简单的问题。关于严密的实数理论的最终建立,一般认为是皮亚诺(peano),康托(Cantor)和戴德金(Dedekind)这几位十九世纪下半叶的数学家的成就。所谓的「戴德金分划」仍然是今天的教科书里对「实数」这一概念所介绍的标准模型。在这套模型里,人们能够在逻辑上完全自洽的前提下回答有关实数结构的一切问题,而正如前面指出过的那样,它完全摈弃了「无穷小」的存在。 (是不是数学家说无穷小量不存在,这个词就没意义了呢?) 这又回到了前面我们屡次面对的那个关于数学断言的权威性的问题。如果承认无穷小是一个有关数的概念,那么,数学家的工作已经告诉我们,在实数理论中没有无穷小的位置。事实上,康托本人就曾经证明过承认无穷小是同承认实数中基本的阿基米德原理相矛盾的。(阿基米德原理是一个关于实数性质的基本原理,如果阿基米德原理是错的,整个数学大概都无法得以建立。)但是,如果把问题拉到数学的疆域以外,如果认为人们有权利不按照数学家的方式讨论数本身的性质,那么我们面对的就已经是全然另一层次的问题,——也就不可能在这里得到详尽的讨论了。 2. 无穷大。 有趣的是,和无穷小如此相似的一个词——无穷大——却在今天的数学语言中占有与之判若云泥的一个地位:人们谈论它,研究它,还给它以专门的记号(∞)。造成这一多少有点奇特的事实的关键在于,和通常人们的误解不同,无穷大其实并不是无穷小这个词在概念上的对偶(尽管乍一看似乎如此)。事实上,就某种意义而言,说它是零这个词的对偶也许更为恰当一些。 让我们回顾一下这个概念在数学中的递进过程:我们都知道存在这样的数列(例如自然数列),可以一直变得越来越大,直到比任何给定的数都更大,这种时候,我们把这样的数列称为「趋于无穷大」或者直接就简称它是无穷大。——请注意,在这里无穷大仅仅是作为人们对一个数列或者变量的极限的叫法而存在的,我们并没有承认它是一个数或者一个确定的对象,而只是一个形容词而已。每个具体的数都不可能真的比别的数都大,尽管一系列数可以没有止境地变得越来越大,这实质上就是亚里士多德所强调的「潜无穷」。 如果事情只是到此为止,那一切相安无事,无穷大这个词今天的地位也只不过和无穷小一样仅仅作为对一种极限的描述而存在罢了。可是这里有某种微妙的差别:正如前面提到过的那样,「无穷小」不是别的,只是一个变量极限为零而已,所以我们总可以认为无穷小只是一种说法,在必要的时候可以用「趋于零」这样一个替代说法来换掉它。可是「无穷大」是什么极限呢?它并不是趋于任何特定数字的极限,而是「趋于无穷大的极限」,你看,这个词轻易回避不掉。 于是人们只好被迫不断的提及它,要是非要替换成别的说法,就要花好多倍唇舌才成。比如,前面说过直线本身也是直线的可测子集,那么整条直线的测度是多少?当然我们可以佶屈赘牙地说「直线可测,但是它的测度并不是一个确定的数,而只是比任何给定的实数都要大。」——这也太麻烦了一点。为什么不省点事直接说「直线的测度等于无穷大」呢? 这样人们就开始不断的把无穷大当一个名词来使用,假装它好像也是一个数一样,这就是所谓的「实无穷」。哲学家和数学家中比较喜欢哲学争辩的那一部分人对此有许多争论(直觉主义学派等等),但是让我们忽略掉它们,先看看在今天数学家是怎么使用这个词的吧。 首先,无穷大不是一个实数,在实数集中不存在任何数比其他所有数更大,这是确定无疑的事情。 其次,在许多场合下,我们确实可以把无穷大当作一个名词来使用,既方便又不造成困扰。例如前面提及的在测度论里我们说一个可测集的测度是一个「数」,这里的「数」既包括非负实数也包括无穷大。事实上,在有些数学书里索性把实数加上无穷大这样一个集合称为「增广实数集」。我们甚至可以对无穷大定义运算(在事先做好严格约定的前提下),这对于很多理论的叙述带来了极大的方便。如果说得更技术化一点,在很多数学分支(例如仿射几何)里我们还能像让每个实数对应于直线上的一个点这样一个几何对象一样,让无穷大这样一个特殊的对象也对应于一个特殊的几何对象(所谓的「无穷远点」),并且让所有这些几何对象平等地参与到几何学中来。只要仔细做好事先的公理准备,这样子做并不会引起任何逻辑问题。 ——也许有人会觉得奇怪,怎么数学家可以如此随便,想给实数集添上什么就添上什么?事实上,数学家就是有这样的权利,因为说到底,数学不是研究真实自然界的学问,而只是研究人造概念的学问。任何人造概念,只要在逻辑上被严格的描述出来又不造成内在的逻辑不自洽,都可以被认为是「存在」的。复数的引进就是一个很好的例子。 ——那前面怎么又说「无穷小不存在」?就算无穷小本身不能是一个实数,为什么不能把它添在实数集之外也弄一个「增广实数集」出来研究? 事实上,这样做是可以的,而且事实上也确实有好事者这样做过。问题在于它毫无意义。前面说了,任何人都有权利自己定义出一些什么东西来作为数学对象来研究,这是对的,只要他在逻辑上足够细心就行。可是这句话还有一个常常被人忽视的反面:数学尽管不是直接研究自然界的学问,可是它毕竟是在人们研究自然界的过程中形成而又有助于人们对自然界的理解的。如果一个数学概念纯粹只是自说自话的产物,那无论它多么自洽,也没有人会去关心它。复数这一人为的构造之所以被所有人承认是因为它巨大的威力。而无穷小——正如前面所指出的——是一个毫无必要引入的概念,添上它只会自找麻烦。无穷小和无穷大的命运之所以不同,关键正在于此。 回到无穷大这个词上来。这一系列文章的一开头还说过无穷大可以分成「可数」和「不可数」的无穷大,那又是怎么回事? 这是一个更常见的误解,这其实是两个不同的词:作为一个极限的(潜)无穷和由此引申而来的作为一个数学对象的(实)无穷是一码事,作为一个集合的势的可数无穷或者不可数无穷是另一码事,不同于前者的「无穷大」,后者其实应该被称为「无穷多」才对,只是人们通常混为一谈。事实上,当我们说「一个集合有无穷多个元素」的时候,我们有必要指出这个集合是不是可数,而当我们说「一条直线的测度是无穷大」的时候,却完全谈不上什么可数不可数。——在数学书中通过观察上下文,分辨这两者并不是很难的事情,可是如果把「无穷」作为一个哲学命题来研究的时候,这种区分却是必须的。——不幸的是,就我阅读所及,很多时候人们都没做到这一点。 3. 不可测集与选择公理、数学的严密性 回顾一下「不可测集」这个词的意思:在勒贝格测度的意义下,总有一些集合是没办法定义测度的,这样的集合称为不可测集。同时已经被我们反复指出过的一点是:一个没受过专门数学训练的人所能想象到的任何古怪集合其实都是可测的,不可测集非常罕见。 不可测集的存在是数学中中一件令人遗憾的事实,要是能给直线的任何一个子集定义长度,这样的理论该有多么漂亮啊……数学中常常有这样的情形,一个人们通过直觉认定的美妙设想,偏偏被一两个好事者精心构造出的反例破坏了,但是数学毕竟受制于逻辑,不管一个反例多么煞风景,只要它确实成立,数学家也只好接受它。 可是不可测集这个例子有点不同:构造不可测集,用到了选择公理。 这件事情说来话长,简单的说,我们都知道整个数学是建立在一些很显然也很直观的公理之上的,这些公理大多数都是诸如等量之和为等量之类的废话,可是选择公理稍微复杂一点,它是说: 任何给定一组非空集合,我们总能从其中的每一个集合里取出一个元素组成一个集合。 也像废话一样,是吧,可是这句话多少有点罗嗦,不像等量之和为等量一样简单明了。于是人们对它多少有所争议,有人认为它不应当排在基本公理之内。可是毕竟这句话也挑不出什么错,而且人们很快发现,很多很有用的数学结果离开选择公理就变得很难证明或者根本不可能证明,于是将就着也就承认它了。 可是不可测集的存在却又掀起了人们的疑虑,反对选择公理的人说,看看吧,要是没有选择公理,也就没有不可测集了。 赞成的人反驳说,不可测就不可测呗,有什么大不了的……虽然整个理论确实变得不那么完美了。——他们不知道更大的问题还在后面。1924 年,波兰数学家巴拿赫(Banach)在选择公理和不可测集构造法的基础上,证明了石破天惊的「分球定理」:一个半径为 1 的实心球,可以剖分成有限的若干块,用这些块可以完整地重新拼出两个半径为 1 的实心球体! 这一下引起轩然大波,反对选择公理的数学家们声势大振,认为选择公理完全是 trouble maker,必欲除之而后快。赞成选择公理的数学家们则指出选择公理「功大于过」,毕竟有很多有价值的数学成果出自选择公理的基础。双方僵持的结果是大家各行其是,大多数数学家承认选择公理,同时忍受巴拿赫分球定理所带来的不适感,少数数学家坚持不要选择公理,为此失去很多别的很有用的定理也在所不惜。 这一僵持局面维持了很多年,直到二十世纪的中叶才被戏剧性地解决。人们在不承认选择公理的假设下构造出了一大堆比巴拿赫的球体更严重的反例(例如一个空间同时有两个维数)。这些反例不只像巴拿赫的例子一样违反直觉,而且还严重的破坏了大多数已有的数学结果。于是人们发现,承认选择公理也许是必须的,而像巴拿赫的反例那样的反直觉的结果,也只能被迫承担下来了。 所以到今天几乎所有的数学研究都是在承认选择公理的基础上进行的。虽然作为一种后遗症,人们总是会时不时地谨慎的在使用选择公理的时候加上一句声明:「本文依赖选择公理。」——这也许是这条公理的一个特殊待遇了。 以上便是这段公案的来龙去脉。很多人可能在读完这段故事之后疑虑重重。什么啊?数学家们难道是这么随便的确定公理体系的么?如此的实用主义,似乎全然置真理的地位于不顾的样子。很多人可能还会想起欧几里德第五公设的故事,觉得数学家们原来如此不负责任,带给人们的不是一套严整规范的理论体系,而是一个支离破碎的混乱图景。连公理的问题都搞不定,整个数学岂不是空中楼阁? 限于篇幅,这篇文章不可能对这个问题予以展开论述,可是至少我们可以澄清一个常见的似是而非的误解:数学是严密性的科学,数学的发展也只有在严密的公理化基础上才能得以实现。 这句话——至少在字面上——是对的。不可测集的例子本身就说明,为了严密性,数学家们甚至不惜放弃直观,——像巴拿赫球那样的例子尽管如此怪诞,可是它是严密逻辑的产物,数学家也只好承认它的存在。 可是在更宏观的层面上,这句话却是错的。前面提到的分析学就是很好的例子:微积分的思想的提出是在十七世纪,在随后的十八世纪里取得了丰硕的成果,可是它的严密化却直到十九世纪下半叶才真正得以实现。测度论是另一个例子:「测度」是人们对于长度这个词的直观理解的严密化,可是这并不是说,在测度论被提出之前的漫长岁月里人们对于长度都一无所知,恰恰相反,人们已经知道了相当多的事情,只是等待测度论的语言让一切都变得精确和完整而已。 所以数学的发展实质上是一个拖泥带水的过程,一代又一代崭新、充满活力却又粗糙的思想被提出来,人们意识到它的重要性,予以发扬光大,产生一系列重要的成果同时又带来困惑,直到崭新的数学语言诞生,清理战场,让一切显得井井有条,像教科书上的文字一样道貌岸然,而同时却又有新的粗糙的思想诞生了……在这个过程里,严密性始终只是一个背景,尽管无处不在,可是并不占据舞台的统治地位。数学家们在意严密性,追逐严密性,甚至不惜为了严密性而牺牲看似有价值的学术成果,可是严密性并不是数学发展的引领旗帜,从来都不是。 这就是为什么同很多人的误解相反,大多数数学家其实并不关心那些关于数学基础的哲学性的争论,这也就是为什么我把眼前这些讨论放进附记的原因——一件事情是不是关系到数学的逻辑基础和这件事情在数学上是不是重要一点关系都没有。所有这些故事:可数与不可数、可测与不可测、选择公理等等,都是和二十世纪初所谓「第三次数学危机」的大背景联系在一起的,那段时间里数学家之间产生了无数纷争,可是今天的数学学生们在严肃认真地学习集合论和测度论的同时,却只对那些八卦付之一笑,作为茶余饭后的谈资。——事实上,即使在二十世纪初,也有大量的数学家根本不关注这件事情或者压根就采取了日后看来是错误的立场(反对康托,反对不可数集的概念,等等)却同时又在自己的领域里作出了重要的甚至是历史性的贡献。 关于那个所谓的「第三次数学危机」,有一本著名的科普著作《数学:确定性的丧失》[2]专门讨论了它。这本书内容相当详尽,不幸的是它所引起的误解和它阐明的事情一样多。关于这次「危机」的描述主要集中在第十二章,那一章的结尾倒是相当深刻,值得特别引用在此: 「一个寓言恰如其分地概括了本世纪有关数学基础的进展状况。在莱茵河畔,一座美丽的城堡已经矗立了许多个世纪。在城堡的地下室中生活着一群蜘蛛,突然一阵大风吹散了它们辛辛苦苦编织的一张繁复的蛛网,于是它们慌乱地加以修补,因为它们认为,正是蛛网支撑着整个城堡。」 […]

长度是怎样炼成的 (三)长度的意义

回到我们的主题:「长度」的意义上来。 先总结一下我们已经知道了的事情: 所谓(一维)测度,就是要给直线上的每个子集标上一个数字,使得它们满足下面两条性质: 空集对应的数字(空集的测度)是零。 若干个(但是至多可数无穷个)彼此不相交的子集,它们并在一起得到的子集的测度,刚好等于这些子集各自测度之和。 这样的测度存在很多种,而且几乎全都行为古怪。为了更好的符合「长度」的概念,我们添上第三条要求: 如果把直线看作实数轴,那么从数轴上a点到b点的线段(这是直线的一个子集)对应的测度应当等于 b-a。 满足这三条性质的对直线上的每个子集定义的测度是不存在的。但是,如果放松要求,不对直线的每个子集定义而只对直线的可测子集定义测度,那么这样的测度存在并且唯一,数学上称为勒贝格测度。靠一系列定理的帮助,对直线的任何一个可测集(一般来说你能想象到的任何子集都是可测集),都有一套严密定义的公式能够把这个测度的具体大小算出来。 于是,数学家郑重宣布: 勒贝格测度就是人们通常所说的「长度」的严密定义,而且是唯一正确的定义。 「什么?」我们的哲学家朋友们一定要跳起来了。「你上面绕来绕去的说了一大堆让人听不懂的话也就罢了,你怎么能说这是关于长度唯一正确的定义呢?这顶多是你们数学家对这个词的理解而已,我最讨厌你们学理科的用这种自以为掌握绝对真理的口气说话了!」 「是么?」数学家回答道,「难道长度这个词还可能有别的理解不成?」 「当然可以。」哲学家愤愤不平地说。「亚里士多德说过……,莱布尼茨说过……,康德说过……,江泽民同志说过……,总之,人类对长度这个词的理解是经历过漫长的争论的,而且必然还会一直争论下去。每个人都有权提出自己的观点啊。」 「我不管他们怎么说,」数学家说,「我只问你心里有没有对长度的定义?」 「当然有了。」哲学家骄傲地说,「我认为,长度就是……」 「慢着,」数学家迫不及待的打断他,「我不想听你的哲学论文,我只问你,在你对长度的定义里,空集有没有长度?有的话,是不是零?」 「是……的。」其实哲学家暂时没想到空集这么细节的事情,但是他觉得反正这个无关紧要吧,所以先首肯了。 「那么,按照你定义的长度,数轴上从 2.76 这个点到 6.98 这个点的线段的长度,是不是等于 6.98-2.76=4.22?」 「这个废话,不然还叫什么长度啊。」哲学家有点不耐烦了。 「还有,如果我把可数无穷个有长度的集合放在一起,总长度等不等于各自的长度之和?」 「这个……」哲学家对于「可数无穷」这个词有点拿不准,「反正两个线段的总长度是等于它们各自的长度之和的,至于无穷个……好吧就算是吧,那又怎样?」 「那就结了。」数学家慢条斯理地说。「我根本不关心你关于长度的哲学观念是怎么建立起来的,我只想说,如果你的观念没有内在的逻辑矛盾,那它就一定和我们数学家所说的勒贝格测度是一回事。这就是我为什么说勒贝格测度是唯一正确的长度的定义。——你当然可以有你自己的定义,只不过它一定正好就是勒贝格测度!」 「什么和什么呀!」哲学家有点懵了。「可是你什么也没有定义啊,你只是自己号称证明了一个所谓勒贝格测度的存在,可是我们关心的是为什么!我们哲学家要问的是为什么从 2.76 这个点到 6.98 这个点的线段的长度等于 4.22,你却把它写在了定义里,这并没有回答问题本身啊。」 「唉,」轮到数学家不耐烦了。「从 2.76 这个点到 6.98 这个点的线段的长度当然也可以不等于 4.22,只要你不取勒贝格测度而换一种测度就成了,——问题是人们不喜欢那样啊。不是为什么它的长度等于 4.22,而是你首先要求了 4.22 这一属性,然后把它叫做长度。为什么只有在春天桃花才会开?因为是你把桃花会开的那个季节叫做春天的!」 哲学家:「……」 数学家:「……」 嗯,我不知道这段对话是把问题讲清楚了还是搅得更混乱了。当然这里面还有许许多多的细节需要阐明,下面让我们来更仔细的讨论一下吧。 「长度是什么?为什么从 2.76 这个点到 6.98 这个点的线段的长度等于 4.22?」正如前面那个数学家所说的,这个问法本身就是不合适的。我们给从 2.76 这个点到 6.98 […]