让我们暂时放下关于无穷的那些讨论,回到主题:我们通常所说的长度面积体积这些词,究竟是什么意思? 为了更清楚的阐明这个主题,让我们把目光只集中在最简单的一维情形,也就是说,我们只考虑「长度」 这个词。我们希望,取出直线上的一部分,就有一个「长度」 存在。如果能做到这一点,那么类似的,面积和体积之类的高维词汇也可以类似的得以理解。 我们把目前要回答的问题列在下面: 什么是长度? 是不是直线上任何一部分都可以有长度? 直线上的一个线段当然应该有长度,直线上的两段分离的线段也有总长度,单点有没有长度呢?随便从直线上挖出一些点来得到的也许是虚虚实实的一个「虚线段」有没有长度?是不是我们从直线上任意取出一个子集合(线段啦单点啦都可以看成是直线的特殊的子集合),都可以定义它的长度?——这件事无论在数学上还是应用上都是重要的,如果能够给直线的任何子集定义长度,那就太方便了。 如果上面这件事是可以的话,那么随便给一个直线上的点集,长度怎么计算? 等等等等。 事实上,在数学中这些问题都能够得到解答,但是首先让我们把上面问题里的「长度」这个词都换成更准确的一个术语:测度(measure)。之所以要采用这么一个新造的词,首先是因为「长度」有时候有局限性。一个线段的长度好理解,一个复杂的点集,说长度就会显得很奇怪;不仅如此,在二维情形下我们还要研究面积,三维还要研究体积,四维还要研究不知道什么积……为了省去发明一个又一个新词的苦恼,我们把这些东西统一叫做二维测度,三维测度……一了百了。 好吧,那么,我们来定义(一维)测度。 ——不,不要误会,我并不是要在此刻写出一大段难懂的话,告诉大家「测度就是什么什么什么什么。」 或者更谦逊一点,说「我认为,测度就是什么什么什么什么。」 ——也许这是一般人看来自然不过的工作方式,但不是数学家的。 这是因为,我们现在要定义的是某种特别基础的概念。也许在定义某些很复杂的高层概念的时候这种方式很自然,可是概念越基础,这种方式带来的问题就越大。关于测度这种层次的概念几乎必然伴随着用语言难于精确描述的种种晦涩的思考,一旦一个人试图把他对这个词的理解宣诸笔墨,那么无论他多么小心翼翼的整理他的陈述,在别人看起来他的定义都必然漏洞百出,有无数可以商榷的地方。——而因为这个概念在整个逻辑体系中的位置过于基础,任何商榷又都必然说起来云山雾罩,像哲学家们通常进行的关于基础概念的争论一样令人头昏脑胀。如果数学家们要开会用这种方法给出测度的定义,那一百个数学家一定会提出一百零一种定义来,最终的结果是什么有效的结论也得不到。 数学家们采用的是完全不同的方式:我们先不要贸然去说「什么是测度」,而是先问问自己,当我们想发明一个新的定义的时候,我们在这个定义的背后是想达到怎样一种目的?换句话说,我们想让这个定义实现哪些事情? 首先,测度——不管它具体怎么定义,其作用的对象按照我们的期望是直线上的任意一个子集,而最后得到的测度应该是一个具体的数字。也就是说,所谓定义测度,就是我们需要找到一种方法,使得随便拿来直线上的一个子集,我们都能够最终得到一个数字作为其「长度」。 (在这里我们把无穷大也看成是数字,例如整根直线的测度就是无穷大。) 然后,这种方法总要满足一些必要的约束。——不能随便给一个线段标上一个数字,就说它是测度了。这些约束有哪些呢? 第一,空集(注意是说空集而不是说单点集)本身也是直线的子集,也应该有个测度。我们应当保证空集的测度是零。这是很显然的,否则这个测度就毫无实际意义了。 第二,既然每个子集都有一个测度,那么把两个彼此本身不相交的子集并在一起得到的新的子集也应该有个测度,并且这个测度应该等于两者之和。——这也是很直观的要求。两个线段如果不相交,那么他们的总长度应该等于两者长度之和。更高维的情况也一样,两个二维图形如果不相交,那么总面积应当等于各自面积之和,诸如此类。 更进一步,三个不相交子集的测度之和也应该等于这三个子集并起来的集合的测度,四个也对,五个也对,依此类推,无穷个不相交子集的测度之和也应该等于把它们并起来得到的集合的测度。——注意,是可数无穷个! (为什么呢?直接说任意无穷个不好么?干嘛只限定是可数无穷个?) 数学家是很谨慎的。上面这个性质被称为可数无穷个集合的测度的「可加性」 ,承认可数无穷个集合有可加性是不得不为之,因为在实际应用中我们确实常常会遇到对可数无穷个子集求总测度的问题,可是任意无穷个子集的测度也能相加,这个陈述就太强大了,我们一时还说不好测度有没有这么强的性质,还是先只承认可加性对可数无穷个集合成立好了。 第三…… 「且慢」 ,数学家说,「先别找太多的约束,看看这两条约束本身能够在多大程度上给出测度的定义好了。」 (什么嘛,这两条约束根本什么都没说。第一条是废话,第二条也是很显然的性质,要是只满足这两条就可以叫做测度,那测度的定义也太宽松了,我随随便便就能构造出好多种不同的测度出来。) 也许是这样,可是到时候再添上新的约束也不迟。这也是数学家们常用的办法,先定义尽量宽松的概念,然后再一点一点的附加条件,得到更细致和特殊的子概念。就目前的情况来说,看起来这两条约束确实是宽松了点…… 不幸的是——也许出乎你的意料——这两条约束不是太宽松,而是已经太严苛了。我们可以证明,给直线的每个子集都标上数字作为测度,保证空集的测度是零,并且测度满足可数无穷个集合的可加性,这件事情在逻辑上并无内在的矛盾,但是这样的测度必然具有一些数学上非常古怪的性质。也就是说,这样的测度根本不能用来作为对长度的定义! (关于这件事的证明其实很简单,但是需要一点数学基础才能读懂,详情可以参考文献 [1]。关于什么是「古怪的性质」,后面还会提及。) 在这种情形下,我们只好退而求其次,减少对测度这个概念的期望。——可是前面提到的两条性质都再基本不过了,如果连它们都不能满足,我们定义出来测度又有什么用呢?——于是数学家们另辟蹊径,不是放松这两条限制,而是放松它们的适用范围:我们不去强求测度能对直线的每个子集都有定义,也就是说,我们只挑出直线的一些子集来定义测度,看看能不能避免逻辑上的困境。 需要挑出那些子集呢?很显然,我们希望对于平时人们能接触到的各种常见的子集都能定义测度,所以单点集是需要的,线段也是需要的,而若干线段的交集或并集(这里若干还是指至多可数个)也是需要的,对它们的交集或并集再作交集或者并集也是需要的…… 在数学中,我们把所有线段反复做交集或并集生成的这一大类集合称为可测集(当然它有更严格的定义,不过大概就是这个意思)。不要小看这种生成方式,事实上,你能想象得到的直线的子集其实都是可测集,——要找出一个非可测集的集合反倒是有点困难的事情。虽然可测集不包括直线的全体子集,但是如果我们能对所有可测集定义合理的测度,那这个测度也足以应付人们的需要了。 所幸的是这确实是可以做到的。在测度论中有很大的一部分篇幅是用来论述测度是怎么对可测集得以建立的,这部分内容一般被表述为一个称为 Caratheodory’s theorem 的理论。言简意赅地说:是的,只针对可测集定义的,满足前面那两条假设的「合理」测度总是能够建立得起来的。 这里所谓的「合理」,就是说它能够用来作为我们心目中那个「长度」而存在。为了说明这一点,让我们想想我们离我们的目的地还差多远:直到现在为止,我们还是完全不知道一个测度究竟是什么样子。举例来说,按照我们的想法,一个单点集的测度应当是零(对应于点没有长度的直观),而实数轴上从0点到1点的线段的测度应当是1,更一般地,从a点到b点的线段的测度应当是b-a,——可是这一切我们统统还不知道呢! 这一切确实还未曾得到说明,而且更关键的是,仅仅有前面给出的那两条假设,我们也确实无法推理得出上面那些结论。这也是数学家们的通常做法:先有一个一般的概念,然后通过给它添上一些新的独立约束来构造出更细致的概念。 我们现在已经有了一个一般的测度的概念,把它总结一下,就是说: 对于直线的一大类子集(也就是可测集,谢天谢地,我们在应用中真正关心的集合都属于可测集),我们能够在不伤害逻辑的自洽性的前提下,给他们中的每个都标上一个数字,称为测度,并且这些数字满足下面两条性质: 空集对应的数字(空集的测度)是零。 若干个(但是至多可数无穷个)彼此不相交的子集,它们并在一起得到的子集的测度,刚好等于这些子集各自测度之和。 我们只知道这样的测度是存在的,但是很显然并不唯一,因为我们未曾对这些具体的数值作过任何限定。为了使测度能够符合我们心目中的那个「长度」的概念,我们需要进一步添上一条需要满足的性质: 如果把直线看作实数轴,那么从数轴上 a 点到 b 点的线段(这是直线的一个子集)对应的测度应当等于 b-a,例如,数轴上从 2 […]
长度是怎样炼成的 (二)测度的建立
- Post author By 木遥
- Post date
- Categories In Essay
- 1 Comment on 长度是怎样炼成的 (二)测度的建立